helikite.instruments.msems ========================== .. py:module:: helikite.instruments.msems .. autoapi-nested-parse:: 4) mSEMS -> mSEMS_103_220929_101343_INVERTED.txt (data to be plotted) (has pressure) mSEMS_103_220929_101343_READINGS.txt (high resolution raw data with houskeeping info, error messages) (has pressure) mSEMS_103_220929_101343_SCANS.txt (raw scan data with some houskeeping varaibles) The mSEMS measures particles size distribution for particles from 8 nanometers to roughly 300 nm. The number of bins can vary. Typically we use 60 log-spaced bins but it can change. The time resolution depends on the amount of bins and the scan time but it is typically between 1 and 2 minutes. I mormally do not merge this data with the rest because of the courser time resolution and the amount of variables. The file provides some information on temperature, pressure etc. It then gives the center diamater of each bin (i.e. Bin_Dia1, Bin_Dia2, ...) and then the numbe rof particles per bin (i.e. Bin_Conc1, Bin_Conc2, ...). -> because of the coarser time resolution, data is easier to be displayed as a timeseries (with the addition of total particle concentration and altitude). Houskeeping file: Look at READINGS (look at msems_err / cpc_err) Attributes ---------- .. autoapisummary:: helikite.instruments.msems.logger helikite.instruments.msems.msems_scan helikite.instruments.msems.msems_readings helikite.instruments.msems.msems_inverted Classes ------- .. autoapisummary:: helikite.instruments.msems.MSEMSInverted helikite.instruments.msems.MSEMSReadings helikite.instruments.msems.MSEMSScan Module Contents --------------- .. py:data:: logger .. py:class:: MSEMSInverted(*args, **kwargs) Bases: :py:obj:`helikite.instruments.base.Instrument` .. py:attribute:: name :value: 'msems_inverted' .. py:method:: data_corrections(df, **kwargs) Create new columns to plot bins .. py:method:: file_identifier(first_lines_of_csv) -> bool .. py:method:: set_time_as_index(df: pandas.DataFrame) -> pandas.DataFrame Set the DateTime as index of the dataframe and correct if needed Using values in the time_offset variable, correct DateTime index .. py:method:: read_data() -> pandas.DataFrame .. py:class:: MSEMSReadings(*args, **kwargs) Bases: :py:obj:`helikite.instruments.base.Instrument` .. py:attribute:: name :value: 'msems_readings' .. py:method:: file_identifier(first_lines_of_csv) -> bool .. py:method:: set_time_as_index(df: pandas.DataFrame) -> pandas.DataFrame Set the DateTime as index of the dataframe and correct if needed Using values in the time_offset variable, correct DateTime index .. py:method:: data_corrections(df, *args, **kwargs) .. py:method:: read_data() -> pandas.DataFrame .. py:class:: MSEMSScan(*args, **kwargs) Bases: :py:obj:`helikite.instruments.base.Instrument` .. py:attribute:: name :value: 'msems_scan' .. py:method:: file_identifier(first_lines_of_csv) -> bool .. py:method:: set_time_as_index(df: pandas.DataFrame) -> pandas.DataFrame Set the DateTime as index of the dataframe and correct if needed Using values in the time_offset variable, correct DateTime index .. py:method:: data_corrections(df, *args, **kwargs) .. py:method:: read_data() -> pandas.DataFrame .. py:data:: msems_scan .. py:data:: msems_readings .. py:data:: msems_inverted